Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
2.
Curr Opin Infect Dis ; 34(5): 385-392, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-2323925

ABSTRACT

PURPOSE OF REVIEW: The purpose of the review is to summarize recent advances in understanding the origins, drivers and clinical context of zoonotic disease epidemics and pandemics. In addition, we aimed to highlight the role of clinicians in identifying sentinel cases of zoonotic disease outbreaks. RECENT FINDINGS: The majority of emerging infectious disease events over recent decades, including the COVID-19 pandemic, have been caused by zoonotic viruses and bacteria. In particular, coronaviruses, haemorrhagic fever viruses, arboviruses and influenza A viruses have caused significant epidemics globally. There have been recent advances in understanding the origins and drivers of zoonotic epidemics, yet there are gaps in diagnostic capacity and clinical training about zoonoses. SUMMARY: Identifying the origins of zoonotic pathogens, understanding factors influencing disease transmission and improving the diagnostic capacity of clinicians will be crucial to early detection and prevention of further epidemics of zoonoses.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Pandemics/prevention & control , Zoonoses/epidemiology , Animals , COVID-19/epidemiology , Disease Outbreaks/prevention & control , Humans , SARS-CoV-2/pathogenicity
3.
Stud Health Technol Inform ; 302: 861-865, 2023 May 18.
Article in English | MEDLINE | ID: covidwho-2327217

ABSTRACT

BACKGROUND: Emerging Infectious Diseases (EID) are a significant threat to population health globally. We aimed to examine the relationship between internet search engine queries and social media data on COVID-19 and determine if they can predict COVID-19 cases in Canada. METHODS: We analyzed Google Trends (GT) and Twitter data from 1/1/2020 to 3/31/2020 in Canada and used various signal-processing techniques to remove noise from the data. Data on COVID-19 cases was obtained from the COVID-19 Canada Open Data Working Group. We conducted time-lagged cross-correlation analyses and developed the long short-term memory model for forecasting daily COVID-19 cases. RESULTS: Among symptom keywords, "cough," "runny nose," and "anosmia" were strong signals with high cross-correlation coefficients >0.8 ( rCough = 0.825, t - 9; rRunnyNose = 0.816, t - 11; rAnosmia = 0.812, t - 3 ), showing that searching for "cough," "runny nose," and "anosmia" on GT correlated with the incidence of COVID-19 and peaked 9, 11, and 3 days earlier than the incidence peak, respectively. For symptoms- and COVID-related Tweet counts, the cross-correlations of Tweet signals and daily cases were rTweetSymptoms = 0.868, t - 11 and tTweetCOVID = 0.840, t - 10, respectively. The LSTM forecasting model achieved the best performance (MSE = 124.78, R2 = 0.88, adjusted R2 = 0.87) using GT signals with cross-correlation coefficients >0.75. Combining GT and Tweet signals did not improve the model performance. CONCLUSION: Internet search engine queries and social media data can be used as early warning signals for creating a real-time surveillance system for COVID-19 forecasting, but challenges remain in modelling.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Social Media , Humans , COVID-19/epidemiology , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/epidemiology , Cough , Search Engine , Internet , Forecasting
4.
Emerg Infect Dis ; 29(3): 1-9, 2023 03.
Article in English | MEDLINE | ID: covidwho-2305357

ABSTRACT

The pathogens that cause most emerging infectious diseases in humans originate in animals, particularly wildlife, and then spill over into humans. The accelerating frequency with which humans and domestic animals encounter wildlife because of activities such as land-use change, animal husbandry, and markets and trade in live wildlife has created growing opportunities for pathogen spillover. The risk of pathogen spillover and early disease spread among domestic animals and humans, however, can be reduced by stopping the clearing and degradation of tropical and subtropical forests, improving health and economic security of communities living in emerging infectious disease hotspots, enhancing biosecurity in animal husbandry, shutting down or strictly regulating wildlife markets and trade, and expanding pathogen surveillance. We summarize expert opinions on how to implement these goals to prevent outbreaks, epidemics, and pandemics.


Subject(s)
Communicable Diseases, Emerging , Zoonoses , Animals , Humans , Zoonoses/epidemiology , Pandemics , Animals, Wild , Animals, Domestic , Communicable Diseases, Emerging/epidemiology , Disease Outbreaks
5.
BMC Med Res Methodol ; 23(1): 62, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2278846

ABSTRACT

BACKGROUND: To control emerging diseases, governments often have to make decisions based on limited evidence. The effective or temporal reproductive number is used to estimate the expected number of new cases caused by an infectious person in a partially susceptible population. While the temporal dynamic is captured in the temporal reproduction number, the dominant approach is currently based on modeling that implicitly treats people within a population as geographically well mixed. METHODS: In this study we aimed to develop a generic and robust methodology for estimating spatiotemporal dynamic measures that can be instantaneously computed for each location and time within a Bayesian model selection and averaging framework. A simulation study was conducted to demonstrate robustness of the method. A case study was provided of a real-world application to COVID-19 national surveillance data in Thailand. RESULTS: Overall, the proposed method allowed for estimation of different scenarios of reproduction numbers in the simulation study. The model selection chose the true serial interval when included in our study whereas model averaging yielded the weighted outcome which could be less accurate than model selection. In the case study of COVID-19 in Thailand, the best model based on model selection and averaging criteria had a similar trend to real data and was consistent with previously published findings in the country. CONCLUSIONS: The method yielded robust estimation in several simulated scenarios of force of transmission with computing flexibility and practical benefits. Thus, this development can be suitable and practically useful for surveillance applications especially for newly emerging diseases. As new outbreak waves continue to develop and the risk changes on both local and global scales, our work can facilitate policymaking for timely disease control.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Humans , COVID-19/epidemiology , Communicable Diseases, Emerging/epidemiology , Bayes Theorem , Computer Simulation , Disease Outbreaks/prevention & control
6.
Emerg Microbes Infect ; 12(1): 2178242, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2278716

ABSTRACT

Outbreaks of emerging infectious diseases pose a serious threat to public health security, human health and economic development. After an outbreak, an animal model for an emerging infectious disease is urgently needed for studying the etiology, host immune mechanisms and pathology of the disease, evaluating the efficiency of vaccines or drugs against infection, and minimizing the time available for animal model development, which is usually hindered by the nonsusceptibility of common laboratory animals to human pathogens. Thus, we summarize the technologies and methods that induce animal susceptibility to human pathogens, which include viral receptor humanization, pathogen-targeted tissue humanization, immunodeficiency induction and screening for naturally susceptible animal species. Furthermore, the advantages and deficiencies of animal models developed using each method were analyzed, and these will guide the selection of susceptible animals and potentially reduce the time needed to develop animal models during epidemics.


Subject(s)
Communicable Diseases, Emerging , Vaccines , Animals , Humans , Communicable Diseases, Emerging/epidemiology , Disease Outbreaks/prevention & control , Public Health , Models, Animal , Disease Susceptibility
7.
Health Aff (Millwood) ; 42(3): 366-373, 2023 03.
Article in English | MEDLINE | ID: covidwho-2285269

ABSTRACT

Early detection and ongoing monitoring of infectious diseases depends on diagnostic testing. The US has a large, diverse system of public, academic, and private laboratories that develop new diagnostic tests; perform routine testing; and conduct specialized reference testing, such as genomic sequencing. These laboratories operate under a complex mix of laws and regulations at the federal, state, and local levels. The COVID-19 pandemic exposed major weaknesses in the nation's laboratory system, some of which were seen again during the global mpox outbreak in 2022. In this article we review how the US laboratory system has been designed to detect and monitor emerging infections, describe what gaps were revealed during COVID-19, and propose specific steps that policy makers can take both to strengthen the current system and to prepare the US for the next pandemic.


Subject(s)
Communicable Diseases, Emerging , Pandemics , Humans , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , COVID-19 , Laboratories , Pandemics/prevention & control , Policy
8.
Annu Rev Anim Biosci ; 11: 33-55, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2284296

ABSTRACT

Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. Over the years, zoonoses have become increasingly significant threats to global health. They form the dominant group of diseases among the emerging infectious diseases (EID) and currently account for 73% of EID. Approximately 25% of zoonoses originate in domestic animals. The etiological agents of zoonoses include different pathogens, with viruses accounting for approximately 30% of all zoonotic infections. Zoonotic diseases can be transmitted directly or indirectly, by contact, via aerosols, through a vector, or vertically in utero. Zoonotic diseases are found in every continent except Antarctica. Numerous factors associated with the pathogen, human activities, and the environment play significant roles in the transmission and emergence of zoonotic diseases. Effective response and control of zoonotic diseases call for multiple-sector involvement and collaboration according to the One Health concept.


Subject(s)
Communicable Diseases, Emerging , Virus Diseases , Animals , Humans , Animals, Domestic , Disease Reservoirs/veterinary , Zoonoses , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/veterinary , Virus Diseases/epidemiology , Virus Diseases/veterinary
9.
Lancet Planet Health ; 7(4): e329-e335, 2023 04.
Article in English | MEDLINE | ID: covidwho-2281077

ABSTRACT

The unprecedented economic and health impacts of the COVID-19 pandemic have shown the global necessity of mitigating the underlying drivers of zoonotic spillover events, which occur at the human-wildlife and domesticated animal interface. Spillover events are associated to varying degrees with high habitat fragmentation, biodiversity loss through land use change, high livestock densities, agricultural inputs, and wildlife hunting-all facets of food systems. As such, the structure and characteristics of food systems can be considered key determinants of modern pandemic risks. This means that emerging infectious diseases should be more explicitly addressed in the discourse of food systems to mitigate the likelihood and impacts of spillover events. Here, we adopt a scenario framework to highlight the many connections among food systems, zoonotic diseases, and sustainability. We identify two overarching dimensions: the extent of land use for food production and the agricultural practices employed that shape four archetypal food systems, each with a distinct risk profile with respect to zoonotic spillovers and differing dimensions of sustainability. Prophylactic measures to curb the emergence of zoonotic diseases are therefore closely linked to diets and food policies. Future research directions should explore more closely how they impact the risk of spillover events.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Animals , Humans , Pandemics , Zoonoses/epidemiology , Communicable Diseases, Emerging/epidemiology , Animals, Wild
10.
J Math Biol ; 86(4): 60, 2023 03 25.
Article in English | MEDLINE | ID: covidwho-2251902

ABSTRACT

We propose and analyze a family of epidemiological models that extend the classic Susceptible-Infectious-Recovered/Removed (SIR)-like framework to account for dynamic heterogeneity in infection risk. The family of models takes the form of a system of reaction-diffusion equations given populations structured by heterogeneous susceptibility to infection. These models describe the evolution of population-level macroscopic quantities S, I, R as in the classical case coupled with a microscopic variable f, giving the distribution of individual behavior in terms of exposure to contagion in the population of susceptibles. The reaction terms represent the impact of sculpting the distribution of susceptibles by the infection process. The diffusion and drift terms that appear in a Fokker-Planck type equation represent the impact of behavior change both during and in the absence of an epidemic. We first study the mathematical foundations of this system of reaction-diffusion equations and prove a number of its properties. In particular, we show that the system will converge back to the unique equilibrium distribution after an epidemic outbreak. We then derive a simpler system by seeking self-similar solutions to the reaction-diffusion equations in the case of Gaussian profiles. Notably, these self-similar solutions lead to a system of ordinary differential equations including classic SIR-like compartments and a new feature: the average risk level in the remaining susceptible population. We show that the simplified system exhibits a rich dynamical structure during epidemics, including plateaus, shoulders, rebounds and oscillations. Finally, we offer perspectives and caveats on ways that this family of models can help interpret the non-canonical dynamics of emerging infectious diseases, including COVID-19.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Epidemics , Humans , Stochastic Processes , COVID-19/epidemiology , Disease Outbreaks , Communicable Diseases, Emerging/epidemiology , Disease Susceptibility/epidemiology
12.
Front Public Health ; 11: 1018293, 2023.
Article in English | MEDLINE | ID: covidwho-2246573

ABSTRACT

Climate change impacts global ecosystems at the interface of infectious disease agents and hosts and vectors for animals, humans, and plants. The climate is changing, and the impacts are complex, with multifaceted effects. In addition to connecting climate change and infectious diseases, we aim to draw attention to the challenges of working across multiple disciplines. Doing this requires concentrated efforts in a variety of areas to advance the technological state of the art and at the same time implement ideas and explain to the everyday citizen what is happening. The world's experience with COVID-19 has revealed many gaps in our past approaches to anticipating emerging infectious diseases. Most approaches to predicting outbreaks and identifying emerging microbes of major consequence have been with those causing high morbidity and mortality in humans and animals. These lagging indicators offer limited ability to prevent disease spillover and amplifications in new hosts. Leading indicators and novel approaches are more valuable and now feasible, with multidisciplinary approaches also within our grasp to provide links to disease predictions through holistic monitoring of micro and macro ecological changes. In this commentary, we describe niches for climate change and infectious diseases as well as overarching themes for the important role of collaborative team science, predictive analytics, and biosecurity. With a multidisciplinary cooperative "all call," we can enhance our ability to engage and resolve current and emerging problems.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Communicable Diseases , Humans , Animals , Ecosystem , Climate Change , COVID-19/epidemiology , Communicable Diseases/epidemiology , Communicable Diseases, Emerging/epidemiology
13.
Int J Environ Res Public Health ; 20(1)2022 12 29.
Article in English | MEDLINE | ID: covidwho-2246227

ABSTRACT

The minimal case fatality rate (CFR) is one of the essential fundaments for the establishment of a diverse national response strategy against the COVID-19 epidemic, but cannot be quantitatively predicted. The aim of the present study was to explore the applicable quantitative parameters labeling integrating responding capacity from national daily CFR curves, and whether the minimal CFR during initial emerging epidemic outbreaks can be predicted. We analyzed data from 214 nations and regions during the initial 2020 COVID-19 epidemic and found similar falling zones marked with two turning points within a fitting three-day-moving CFR curve which occurred for many nations and regions. The turning points can be quantified with parameters for the day duration (T1, T2, and ΔT) and for the three-day moving arithmetic average CFRs (CFR1, CFR2, and ΔCFR) under wave theory for 71 nations and regions after screening. Two prediction models of minimal CFR were established with multiple linear regressions (M1) and multi-order curve regressions (M2) after internal and external evaluation. Three kinds of falling zones could be classified in the other 71 nations and regions. Only the minimal CFR showed significant correlations with nine independent national indicators in 65 nations and regions with CFRs less than 7%. Model M1 showed that logarithmic population, births per 1000 people, and household size made significant positive contributions, and logarithmic GDP, percentage of population aged 65+ years, domestic general government health expenditure, physicians per 1000 people, nurses per 1000 people, and body mass index made negative contributions to the minimal CFR against COVID-19 epidemics for most nations and regions. The spontaneous minimal CFR was predicted well with model M1 for 57 nations and regions based on the nine national indicators (R2 = 0.5074), or with model M2 for 59 nations and regions based on the nine national indicators (R2 = 0.8008) at internal evaluation. The study confirmed that national spontaneous minimal CFR could be predicted with models successfully for most nations and regions against COVID-19 epidemics, which provides a critical method to predict the essential early evidence to evaluate the integrating responding capacity and establish national responding strategies reasonably for other emerging infectious diseases in the future.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Humans , COVID-19/epidemiology , COVID-19/diagnosis , SARS-CoV-2 , Pandemics , Communicable Diseases, Emerging/epidemiology , Disease Outbreaks
14.
Front Public Health ; 10: 1039779, 2022.
Article in English | MEDLINE | ID: covidwho-2243043

ABSTRACT

The world has seen numerous infectious disease outbreaks in the past decade. In many cases these outbreaks have had considerable perinatal health consequences including increased risk of preterm delivery (e.g., influenza, measles, and COVID-19), and the delivery of low birth weight or small for gestational age babies (e.g., influenza, COVID-19). Furthermore, severe perinatal outcomes including perinatal and infant death are a known consequence of multiple infectious diseases (e.g., Ebola virus disease, Zika virus disease, pertussis, and measles). In addition to vaccination during pregnancy (where possible), pregnant women, are provided some level of protection from the adverse effects of infection through community-level application of evidence-based transmission-control methods. This review demonstrates that it takes almost 2 years for the perinatal impacts of an infectious disease outbreak to be reported. However, many infectious disease outbreaks between 2010 and 2020 have no associated pregnancy data reported in the scientific literature, or pregnancy data is reported in the form of case-studies only. This lack of systematic data collection and reporting has a negative impact on our understanding of these diseases and the implications they may have for pregnant women and their unborn infants. Monitoring perinatal health is an essential aspect of national and global healthcare strategies as perinatal life has a critical impact on early life mortality as well as possible effects on later life health. The unpredictable nature of emerging infections and the potential for adverse perinatal outcomes necessitate that we thoroughly assess pregnancy and perinatal health implications of disease outbreaks and their public health interventions in tandem with outbreak response efforts. Disease surveillance programs should incorporate perinatal health monitoring and health systems around the world should endeavor to continuously collect perinatal health data in order to quickly update pregnancy care protocols as needed.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Influenza, Human , Premature Birth , Zika Virus Infection , Zika Virus , Infant, Newborn , Infant , Pregnancy , Female , Humans , Communicable Diseases, Emerging/epidemiology , COVID-19/epidemiology , Infant, Low Birth Weight , Premature Birth/epidemiology
15.
Annu Rev Anim Biosci ; 11: 1-31, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2241983

ABSTRACT

Over the past three decades, coronavirus (CoV) diseases have impacted humans more than any other emerging infectious disease. The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 (coronavirus disease 2019), has resulted in huge economic disruptions and loss of human lives. The SARS-CoV-2 genome was found to mutate more rapidly due to sustained transmission in humans and potentially animals, resulting in variants of concern (VOCs) that threaten global human health. However, the primary difficulties are filling in the current knowledge gaps in terms of the origin and modalities of emergence for these viruses. Because many CoVs threatening human health are suspected to have a zoonotic origin, identifying the animal hosts implicated in the spillover or spillback events would be beneficial for current pandemic management and to prevent future outbreaks. In this review, wesummarize the animal models, zoonotic reservoirs, and cross-species transmission of the emerging human CoVs. Finally, we comment on potential sources of SARS-CoV-2 Omicron VOCs and the new SARS-CoV-2 recombinants currently under investigation.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Humans , Animals , COVID-19/veterinary , SARS-CoV-2/genetics , Disease Outbreaks , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/veterinary , Models, Animal
16.
17.
JMIR Public Health Surveill ; 7(3): e26719, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-2197901

ABSTRACT

BACKGROUND: Patient travel history can be crucial in evaluating evolving infectious disease events. Such information can be challenging to acquire in electronic health records, as it is often available only in unstructured text. OBJECTIVE: This study aims to assess the feasibility of annotating and automatically extracting travel history mentions from unstructured clinical documents in the Department of Veterans Affairs across disparate health care facilities and among millions of patients. Information about travel exposure augments existing surveillance applications for increased preparedness in responding quickly to public health threats. METHODS: Clinical documents related to arboviral disease were annotated following selection using a semiautomated bootstrapping process. Using annotated instances as training data, models were developed to extract from unstructured clinical text any mention of affirmed travel locations outside of the continental United States. Automated text processing models were evaluated, involving machine learning and neural language models for extraction accuracy. RESULTS: Among 4584 annotated instances, 2659 (58%) contained an affirmed mention of travel history, while 347 (7.6%) were negated. Interannotator agreement resulted in a document-level Cohen kappa of 0.776. Automated text processing accuracy (F1 85.6, 95% CI 82.5-87.9) and computational burden were acceptable such that the system can provide a rapid screen for public health events. CONCLUSIONS: Automated extraction of patient travel history from clinical documents is feasible for enhanced passive surveillance public health systems. Without such a system, it would usually be necessary to manually review charts to identify recent travel or lack of travel, use an electronic health record that enforces travel history documentation, or ignore this potential source of information altogether. The development of this tool was initially motivated by emergent arboviral diseases. More recently, this system was used in the early phases of response to COVID-19 in the United States, although its utility was limited to a relatively brief window due to the rapid domestic spread of the virus. Such systems may aid future efforts to prevent and contain the spread of infectious diseases.


Subject(s)
Communicable Diseases, Emerging/diagnosis , Electronic Health Records , Information Storage and Retrieval/methods , Public Health Surveillance/methods , Travel/statistics & numerical data , Algorithms , COVID-19/epidemiology , Communicable Diseases, Emerging/epidemiology , Feasibility Studies , Female , Humans , Machine Learning , Male , Middle Aged , Natural Language Processing , Reproducibility of Results , United States/epidemiology
18.
Biosci Trends ; 16(6): 381-385, 2022.
Article in English | MEDLINE | ID: covidwho-2202796

ABSTRACT

Targeting the 9 countries with the highest cumulative number of newly confirmed cases in the past year, we analyzed the case fatality ratio (CFR) among newly confirmed cases and the vaccination rate (two or more doses of vaccine per 100 people) in the United States of America (USA), India, France, Germany, Brazil, the Republic of Korea, Japan, Italy, and the United Kingdom (UK) for the period of 2020-2022. Data reveal a decrease in the CFR among newly confirmed cases since the beginning of 2022, when transmission of the Omicron variant predominates, and an increase in vaccination rates. The Republic of Korea had the lowest CFR among newly confirmed cases (0.093%) in 2022 and the highest vaccination rate (86.27%). Japan had the second highest vaccination rate (83.12%) and a decrease in the CFR among newly confirmed cases of 1.478% in 2020, 1.000% in 2021, and 0.148% in 2022; while the average estimated fatality ratio for seasonal influenza from 2015-2020 was 0.020%. Currently, most countries are now easing COVID-19-related restrictions and are exploring a shift in management of COVID-19 from an emerging infectious disease to a common respiratory infectious disease that can be treated as the equivalent of seasonal or regional influenza. However, compared to influenza, infection with the Omicron variant still has a higher fatality ratio, is more transmissible, and the size of future outbreaks cannot be accurately predicted due to the uncertainty of viral mutation. More importantly, as countries shift their response strategies to COVID-19, there is an urgent need at this time to clarify what the subsequent impacts on healthcare systems and new challenges will be, including the clinical response, the dissemination of scientific information, vaccination campaigns, the creation of future surveillance and response systems, the cost of treatments and vaccinations, and the flexible use of big data in healthcare systems.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Influenza Vaccines , Influenza, Human , Humans , United States , COVID-19/epidemiology , Influenza, Human/epidemiology , SARS-CoV-2 , Communicable Diseases, Emerging/epidemiology , Delivery of Health Care
SELECTION OF CITATIONS
SEARCH DETAIL